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Abstract

This report deals with the ongoing development of Finite Element analysis capability for
dynamic crack formation and propagation in structures. Such capability is intended for
engineering analysis and design application in situations that may or may not lead to
fragmentation in the structures considered. The analysis procedures discussed herein
have the potential to predict the patterns of fragmentation that may occur based on
tracking the growth behavior of a large number of “pre-existing” starter cracks.
Discussed here are the techniques that are being called the Virtual Finite Element (VFE)
approach, the Tied-Node VFE approach and the Interface Crack Element (ICE) approach.

The analyses are based on accepted approaches to the prediction of crack propagation and
they make use of the currently available finite element codes ABAQUS and DYNA3D as
the frameworks for analyses. Numerical results are presented for a number of test cases
with the purpose of making comparisons among various numerical simulations and, in
some cases, comparisons with experimental results.

Numerical results are presented for straight metal bars subjected to impact loading on
both ends and on one end.

A discussion is presented on the progress toward developing practical engineering
software tools to deal with the design and analysis of structures in the presence of
propagating cracks under dynamic loading conditions.

Introduction

Predicting the behavior of structural components under dynamic loading conditions in the
presence of propagating cracks is an area of importance and one in which the need for
development of analysis and design tools continues. Important areas in this regard
include rapid deformation of components caused by High Explosive (HE) detonation,
spalling of components, ignition/reaction spread via propagation of cracks in High
Explosive materials and high deformation rate forming processes in manufacturing.

There is a need for an “engineering” Finite Element (FE) approach to predicting crack
initiation and propagation, one that can be applied with levels of effort consistent with
typical engineering best practices. This means that the code applications developed must
have a suitable degree of robustness and be readily available to practicing engineers in
environments in which they can be easily applied. In addition, there is the need to have
the FE model include dynamic effects, nonlinear material behaviors and nonlinear
kinematics. The FE model should predict initiation of pre-existing cracks that will grow
and coalesce as a failure initiates and proceeds and the FE model should predict crack
paths rather than have crack paths predetermined.

The implementation of these developments must be verified such that the results have the
highest reasonable fidelity to the physics and to the numerical approaches involved in the
processes. Such verification is undertaken by assuring that the FE results compare well



with accepted analytical and theoretical results or with trusted numerical results on
relevant examples. It is also necessary that these developments be validated such that the
results have been confirmed to compare well with experimental results for situations that
are relevant to real problems. Validation can occur by analyzing experiments for which
results are available and with which comparisons can be made with the numerical
predictions. In undertaking such comparison, it may be necessary to cooperate with
experimentalists to assure that the experiments and measurements are useful and
appropriate for comparisons with the numerical results.

In some applications there has been a practice of “killing” finite elements within a mesh
as a way to model local failures. In the “killing” approach, an element is removed from
the mesh and from further interaction in an analysis at some point in time. In dynamic
analyses, this approach may lead to discarding mass, momentum and kinetic energy in
cases where realistically the discarding of these quantities is incorrect. Further, such
approaches may lead to nodal points in the FE mesh flying away from the rest of the
mesh in unrealistic and incorrect ways, thus not modeling a problem with the degree of
fidelity desired.

Background

The Engineering Analysis group of the Engineering sciences and Applications division
(ESA-EA) of the Los Alamos National Laboratory commonly works with the Finite
Element packages ABAQUS standard, ABAQUS explicit and DYNA3D among others.
These packages have dynamic capability as well as capability to handle nonlinear
material behavior and nonlinear kinematics. However, in the work being discussed here,
there is a need to model the presence of pre-existing cracks and to allow them to
propagate.

To do that, the approach taken here is to prepare multi-noded meshes and to place the
“virtual” cracks at every element interface in the mesh. As a dynamic analysis
progresses, the fracture mechanics analysis of the crack at each interface is conducted and
the growth of the crack is predicted based on defined local fracture properties at the
interface. When the interface crack grows to sufficient size, the conditions that hold the
interface together are relaxed. In this way, the formation of a macroscopic crack at that
interface is simulated. Such interface cracking can occur at any element interface
location in the mesh so that multiple interfaces can fail and coalesce into larger
macroscopic cracks. When these processes are modeled in a dynamic finite element
code, the wave propagation effects are modeled in the mesh as they are affected by the
propagation of the cracks within the mesh. The process is very much influenced by the
local fracture behavior properties that are prescribed at the interfaces.

With some work, packages such as ABAQUS and DYNA3D are able to accommodate
analysis conditions such as these, but it is necessary to develop methods to address local
crack behavior and interface separation conditions, and implement special elements in
some cases, that will operate in the context of these programs. Discussion of how these
matters are addressed is contained in the balance of this report.



Investigation into interface cracking simulation indicates that possibly the first
development, Li and Reed (1)7, is the work of Goodman et al (2). In this work, the
authors developed a special, zero thickness, interface finite element to model the quasi-
static behavior of joints and seams in rock. The method simulates the propagation of
cracks in an interface element by reducing the interface element stiffness to zero after a
normal-stress fracture criterion has been exceeded. Applications of finite element
analysis using multi-noded meshes date back to the early 1980°s with the work of
Kanninen et al (3). Also, Liaw, et al, (4) used a double noding technique in which
analyses were conducted to determine dynamic stress intensity factors for cracks running
along pre-determined paths at prescribed velocities based on the J integral fracture
criterion.

More recently, Needleman, ef al/, have developed a discrete dynamic crack propagation
model for micro cracks in which continuum finite elements are bonded together by
interfacial cohesion forces, (5), (6), (7), (8). The analyses are based upon an assumed
relationship between the traction and displacement jump between element nodes at the
interface between elements to characterize the interfacial cohesive forces. Results have
been presented for material models representing isotropic-hyperelastic (9), elastic-plastic
(7), and elastic-viscoplastic behaviors, (10 - 12). This method has proven effective in a
number of different applications. Siegmund, ef al, have used the technique to model the
dynamic propagation of a crack across an interface (e.g. a crack originating in an iron
carbide particle propagating into the surrounding ferrite), (11).

Camacho and Ortiz have incorporated this interfacial cohesion model with a damage
model to model impact damage of brittle materials, (13), while Xu et a/, (14), have
investigated the effects of inhomogeneous toughness on dynamic crack growth.
Difficulties arise when applying the method to dimensions typical of engineering
structures because the applications have typically been applied to structures the size of 10
mm or less with the size of the elements being much smaller. Engineering structures can
have dimensions that are many times larger than the structures that have been analyzed
thus far with this method.

In a method identified as the Discrete Particle Computer Simulation (DPCS), Potapov
and co-workers have developed an approach by which to analyze either rigid or
deformable solids that are made up of particles bonded together by cohesive interfaces,
(15), (16), (17). In this approach, the interface bonds are allowed to break at a
predetermined maximum tensile stress and new crack surface is thus formed, thereby

simulating discrete fracture.

The particles involved are treated in three different ways, but for all cases, the interface
model is the same. In the first treatment, the particles are taken to be rigid two-
dimensional elements so that the overall behavior is dominated by the interface
properties. In the second treatment, the particles are modeled as deformable two-

* Numbers in parentheses refer to references listed in the reference section of this document.



dimensional elements. In this case, the overall behavior is dominated by a combination
of the interface properties and the particle properties. In the third treatment, the first
treatment was repeated in three dimensions, that is, three-dimensional rigid particles
bonded together by deformable cohesive interfaces.

In each case, the portion of the model that is of interest, with regard to discrete fracture
modeling, is the cohesive interface. The interface is modeled as a continuous distribution
of material that is modeled as elastic, elastic-plastic, viscous, or with other behaviors. As
the body deforms, resistive normal and tangential tractions are created at the solid
interfaces. If the normal traction at any point along the interface exceeds a predefined
limit stress, the normal component of traction is made to vanish at that location. Further,
a complex algorithm is developed to handle the interference of interfaces before and after
separation occurs. Newton’s Second Law is enforced within each particle rather than by
assembling the global stiffness and mass matrices and solving the equation for the whole
system so this approach may be more similar to an explicit finite element approach than it
is to am implicit finite element approach. Several examples were presented that appeared
to represent reasonably well the qualitative features of expected results.

In a technique called the Element Free Galerkin (EFG) method, Belytschko and others
have recently been developing a technique to model dynamic fracture, (18 —22). Itis
suggested that the EFG might be an improvement on other computational methods in
fracture because of the ease of creation of new surfaces. A continuum is constructed of a
set of nodal points that are contained within the given geometrical description. Moving
least square interpolants, in which a list of nearest neighbors must be known, are then
used for the trial and test functions used in the Galerkin method.

A crack is modeled by introduction of its surface into the geometrical description of the
body. The method has shown some improvements, and deficiencies, when compared to
the finite element method. It has shown some promise in the modeling of dynamic
fracture and is still in the development stage.

The method implemented thus far in EFG can seek the direction of crack propagation in
that the crack is defined to grow at a constant velocity perpendicular to the maximum
hoop stress. Using the equations of dynamic LEFM, the hoop stress is calculated as a
function of angle around the crack tip and the crack is assumed to grow in the direction of
maximum hoop stress at a constant speed. Although this method is still in relative
infancy, the results presented by the authors for both static and dynamic fracture
modeling are shown to agree well with known solutions. Some problems in the EFG
method are also pointed out and new methods are being developed to address these
problems. Enriched methods, (23), have been developed by which a singularity
corresponding to elastostatic fracture has been incorporated into the formulation. Also,
EFG has been coupled with FEM, (20), so that the beneficial aspects of EFG can be
incorporated at specific locations in the structure while finite elements can be used
elsewhere to take advantage of their ease of use in structural modeling.



Many of the techniques summarized in this section have been shown capable of modeling
discrete crack growth, for specific problems, along paths that are not predetermined.
Although each of these techniques could be applied to a wide range of problems,
difficulty arises when the techniques are applied to engineering scale problems. The
methods become either very computationally expensive or simply cumbersome to apply.
With the exception of the DPCS and EFG methods, the techniques have not been applied
to structures of engineering scale at all.

The VFE concept

The technique that has been dubbed the Virtual Finite Element (VFE) method is an
adaptation of an interface element that has specific behaviors ascribed to it. It has been
incorporated into the explicit FE code DYNA3D, and, as developed to date, is applicable
to two-dimensional and three-dimensional analyses. As an example to demonstrate the
approach, Figure 100 shows a rectangular two-dimensional body containing what appears
to be an ordinary two-dimensional finite element mesh. However, this mesh is multi-
noded and has four finite element nodes at each of the internal corners and two nodes
along the edges of the rectangular body. For purposes of illustration, four elements are
identified in Figure 100 as A, B, C and D.
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Figure 100. Multi-noded Two Dimensional Mesh

Figure 101 shows these elements in a separated view to indicate the presence of the four
nodes at the corner common to the four elements. In this figure, the four nodes are
shown, for clarity, as being separated, but they are in the same initial location at the
beginning of an analysis. This definition allows for interfaces to be continuous or to be
separated. When they separate, they simulate the fracture process.

The VFE concept assumes that there is a “virtual” interface element present between the
pairs of elements shown in Figure 101. These virtual elements serve to hold the



neighboring elements together under the application of load and they have several special
properties ascribed to them. Most importantly, every one of these elements has a small
“starter” crack present in it. The starter cracks are thought of as representing a
coalescence of microscopic material defects that are present in engineering materials and
they serve as the starting point of crack propagation between the finite elements. In this
way, cracks that initiate from these starter cracks may grow along the borders of the finite
elements and such cracks may coalesce and develop along paths that are not pre-
determined except that the paths must follow the element edges. The crack paths that
develop are controlled by the mechanics of the problem as simulated by the finite element
code and by the fracture behavior of the interface cracks.

@ O @ Q

Figure 101. Four Neighboring Elements

The VFE’s have several other properties ascribed to them. Among these is the
assumption that the VFE has no mass. In this way all the inertia and kinetic energy of the
problem being analyzed is contained within the “regular” finite elements and failure and
separation that occurs in the virtual elements does not affect the analysis by artificially
discarding kinetic energy. The VFE’s do serve as a sink for that energy required to drive
the cracking process. This approach avoids the kinds of problems of improper tracking
of the kinetic energy that can occur when element “killing” is done. Further, the VFE can
be treated as though it were in static equilibrium at all times, even in a dynamic problem
because there is no mass ascribed to it. The behavior of the VFE’s also adds compliance
to the structure before crack propagation initiates as well as afterward which provides a
realistic model of how the material might behave in the presence of the postulated starter
defects.

A conceptual diagram of the interface element is shown in Figure 102(a). This figure
shows a VFE residing between the two “regular” elements A and C from Figures 100 and
101. The VFE is drawn in solid lines while the neighboring “regular” elements, A and
C, are drawn in dotted lines. The nodes for the regular elements are shown as open
circles and the virtual nodes for the VFE are shown as solid circles. These nodes are
numbered 1 through 4. The VFE is taken to have a width that matches the width of
elements A and C, and it is taken to have a small but finite height. Figure 102(b) isolates
the VFE and shows the coordinate system and the dimensions of the VFE. It is assumed
that the corner nodes of the VFE have the same displacements as the corresponding
corner nodes of the regular elements. For example, nodes 1 and 2 on element C have the
same displacements as nodes 1 and 2 on the VFE respectively. The same is true for



nodes 3 and 4. The following sections discuss the development of the theory for
implementation of the VFE in the DYNA3D code.
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Figure 102. (a) VFE Shown Between Two Neighboring Elements A and C; (b) The VFE
with Coordinate Axes and Dimensions.

DYNA3D is an explicit finite element code. The implementation approach taken was to
expect the code to provide the displacements at each node in the mesh at the end of a time
step. Then, given the values of the nodal displacements, a consistent set of remote shear
and normal stress components in the neighborhood of the VFE can be calculated based
upon the equations of static elasticity describing the crack in the VFE. These remote
stresses are identified in Figure 103 and are designated Gy, 6, and Tp. Knowing these
stresses, the local elastic field equations for the crack are used to approximate the
behavior in the VFE. These equations are used to compute the mean stresses along the
edges of the VFE which are used in turn to calculate the nodal force contribution from the
VFE. These nodal forces are then passed back to DYNA3D, which then proceeds to the
next time step and the process repeats.
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Figure 103. VFE Geometry, Stresses, Coordinates, Node Definitions and Nodal Point
Forces.

The magnitude of G, the applied strain-energy-release-rate, is calculated in each VFE at
each time step and is compared to the fracture toughness, G¢ of the simulated material. If
G is greater than Gc, the crack growth begins. Once the crack growth begins, the work
flowing into the VFE is calculated at each time step and is used to compute how much
the crack grows during the time step. A new crack length is calculated after each time
step and once the crack length reaches the width of the neighboring elements, the VFE
forces are reduced to zero and the simulation progresses from there. In this way the
VFE’s can simulate a growing macroscopic crack under dynamic conditions and the
crack can grow in any direction as dictated by the mechanics of the simulation. Further,
cracks can branch and cracks can initiate at multiple locations in the mesh at the same
time and can grow as multiple cracks as well.



The VFE Formulation

In order to determine the nodal forces for each VFE, their behavior is approximated by
Linear Elastic Fracture Mechanics (LEFM). The deformation field surrounding the crack
in the VFE is taken to be that of a plane stress Griffith crack, subjected to uniform tension
and shear remote stresses as shown in Figure 103. The Westergaard Stress Function for
this case is

Z(z)=—2 1
N M

where

z=E+in

For Mode I, the stress fields are given by

Oy =0,(ReZ-nlmZ')+0, (2)
0, =0,(ReZ+nImZ") 3)

where Gy and G| are remote stresses as shown in Figure 103. The displacements at
position &, are given by

U=U, =c,0l0,ReZ-nimz]+ 61%5 )
V=U, =0,0le,ImZ-nRez]-0,% (5)
=U, =0,0,]04 n lEn
where 0{1=1+—v, azzl_—v, 053:L (6)
E I+v I+v

and E is Young’s Modulus and v is Poisson’s Ratio. Since Equations 4 through 6
represent the displacements in the vicinity of the VFE crack, the nodal displacements
known from the code can be substituted into these equations and the equations can be
solved to yield the remote stresses 6y and G;.

In order to use these results in DYNA3D, it is necessary to define the nodal displacement
components as U; and V;, which refer to the U and V displacements at node number “1”
and are related to the terms in the elastic solution through Equations 4 and 5. Now if; at
the end of a time step in DYNA3D, the displacements U; and V; are evaluated from the
code, they may be substituted into Equations 4 and 5, evaluated at the nodal locations.
This sets up equations that can be solved for 6y and 6;. Knowing 6y and G, it is then
possible to calculate the stresses anywhere in the neighborhood of the crack in the VFE.
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In order to pass the influence of the VFE back to DYNA3D it is necessary to compute the
nodal point force contribution of the VFE. This is done by first computing the average
stresses along the border of the VFE by assuming those stresses will be the same as those
computed from the Equations 2 and 3.

The average stress in the &-direction along the edge at & = b, Figure 103, is calculated
from

— 1"
O = ﬂ__';ggg (b,m)dn (7)
and along the edge n = h, Figure 103, the average normal stress is
b
— 1
0, = O G.hHE (8)
-b

These average stresses may be used to calculate the nodal point forces in the n-direction
from

Iy, =F, :_Fln:_FZHZanT ©)
where the nodal point force components, Fj;, are indicated in Figure 103 and 7 is the
thickness. Advantage has been taken of the symmetry in the Mode I solution here.
Similarly the nodal point forces in the E-direction are calculated from

By =—F =-F; =Fy; :OTghT (10)

A similar development was done to include Mode II loading, but the equations are not
given here since they are easily found in the fracture mechanic literature and are very
similar to those already presented. Once the nodal force contributions for each of the
VFE’s are calculated, these forces are passed to DYNA3D and the simulation continues.

One of the practical realities that had to be addressed was that the deformation states
calculated by DYNA3D do not have the homogeneity that is contained in the solutions
used to represent the VFE behavior. Specifically, the VFE is not subjected to uniform
tensions and shear as is assumed for the elastic solution for the VFE crack. Rather, the
VFE is subjected to non-uniform tensions and shear. In order to address this situation,
the following approach was taken.
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First the U and V displacements of VFE node number 3 in terms of the uniform applied
stresses are defined as

U; =0,U,(b,h)+0,(b/E)+1,U ,(b,h) (11)
Vi =07, (b.h)—0,(vh| E)+ 1,7, (b.h). (12)

In these expressions, the terms U and V refer to the Mode I and Mode I elastic
displacements for a unit applied stress calculated from the Westergard stress functions as

0,Em =0l ReZ ~nImZ| (13a)
7, = oylor, ImZ ~nRe Z] (13b)
0, € = lo, ImZ +nRe 2] (130)
7, Em =00, ReZ -nImZ] (13d)

The displacements of the other nodes can be determined from the symmetry and anti-
symmetry conditions present in the solution from

U, =-U,,-U,, =U,, (14a)
Vi =Va==Vi==V, (14b)
U;II = U:II = _U1*11 = _U;II (14c)

3*11 == 4*11 = _Vljl = VZ*II (14d)

where the subscripts / and /7 refer to Mode I and Mode II respectively and the arabic
numerals refer to the node number on the VFE.

Next we compute the average strain components for the VFE from

£ =5 [V, -U)+ s - U)l2b) (152)
=5 01D+ 0, -li2h) (15b)
Vo =5 04 = 70+ 0 =)0+ (U, = U+ W, = Uiy (150)
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where the U; and V; are the nodal displacements of the VFE as calculated by DYNA.
Using the symmetries and anti-symmetries in the solution, these average strains can also
be expressed in terms of the U and V quantities as

_ 1. . _ 1. . _ 1.« 1 .
Eee :ZU3I ) m :ZVH > Yen :ZV3H+ZU3II (16)

m

Now, using Equations 11, 12, 13, 14, 15 and 16, it is possible to set up the following
equation from which 6y , 6| and Ty can be found

u o1
5 E Op| |E
-V —
71 ? ~ 0~ O-l = (5_‘"” (17)
0 o Yu Uuthl Us
from which
7671
W=7~ ~ X 18
Vy Uy o
b h
g, TtVE,
o (19)
Vv, vU,
Ly
h b
o, = Elg, —o,0,/b) (20)

Now, at the end of a time step in DYNA3D, these stress levels are known. It is to be
emphasized that these are the uniform stress approximations required for the VFE to be in

overall static equilibrium with the surrounding dynamic stress field at a given point in
time.

From these stresses, it is possible to compute the standard LEFM Stress Intensity Factors
for the VFE crack in each VFE in the mesh. This is done using

K, =0,\ma 21
K, =1t,Nm (22)
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where K refers to the stress intensity factor, a is the crack half-length, and the subscripts
refer to Modes I and II. Next, the applied Strain-Energy-Release-Rate is computed from

(23)

In calculating G in this way it is assumed that the crack grows in its own plane. While in
general this does not occur, it is deemed appropriate to make this approximation in this
simulation approach because the cracks only grow to the extent of the width of one VFE
in one plane and thereafter can change direction in accordance with the surrounding
deformation field. In each VFE the crack is constrained to not grow until the condition is
satisfied that

G>G, (24)

in which G, is the fracture energy rate required to produce crack propagation and G is the

“applied” Crack Extension Force. The next issue of importance is, once the crack starts
to grow, based on Equation 24, how far will it grow during a DYNA3D time step? This
issue was addressed by calculating the work going into the VFE during the time step and
ascribing that work to driving the crack tip forward. The increment of work was
calculated from

4
AW =) F oV A (25)
n=1

where AW refers to the work increment, F, refers to the nodal point force vectors on the

VFE nodes and V refers to the nodal point velocity vectors on the VFE nodes. In this

approach it was assumed that all of the energy going into the VFE, after cracking started,
went to driving the crack tip forward. The increment of crack growth was then
calculated from the energy balance

AW =G, (2TAa)
or

AW
2G.T

Aa = (26)

for each time step and the crack size was then updated by adding Aa to the current crack
size. In Equation 26, “T” is the thickness. The crack size was allowed to increase until
the crack length 2a became equal to the element width 2b.
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These steps constitute the original implementation of the VFE into DYNA3D. A
significant amount of testing was undertaken with this implementation with some
success. It was found that this approach to modeling crack initiation and propagation
worked within limitations. Figure 104 shows the results of an early test simulation
conducted using this approach on a center crack in a wide plate using a very crude finite
element mesh. In this case, the pre-existing center-crack was placed between the two
elements on the left-hand side of the mesh. All other pairs of finite elements had VFE’s
placed between them. The analysis was conducted with vertical tensile forces applied to
all the nodes along the top and bottom. The figure shows the analysis at a point in time
after the first VFE had fully failed and the macroscopic crack is propagating to the right.
At the time shown the second VFE has just failed.

min: 1 78e+04, shell 1 Y Stress
ok 1.571a+058, shell 7
Surface: middle

Ref frame: glotal

2 39e+05

—194e+05

aight element test problem far
1 = 1.2548%e-04

Figure 104. Eight-Element VFE Simulation of a Central Crack Loaded in Tension.

Work was undertaken to analyze problems of increasing complexity using this approach
and while successes were attained, difficulties were encountered as well. One of the
difficulties was that it was necessary to select “h”, the element height, for each VFE. No
basic reason was uncovered to select any particular height as compared to another. It was
determined that if “h” was too large, the VFE’s would take too much of the stress applied
to the structure in the “” direction, see Figure 102b, leading to an unrealistic simulation.
If “h” was too small it was found that DYNA3D would be forced into a numerically
unstable mode. Also, it appeared that an unrealistically large amount of shear
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compliance was always present in the VFE’s. The effect of this excessive shear
compliance can be seen in Figure 104 to some degree. It is believed that the non-zero
height of the element caused the seemingly excessive compliance in the “€” direction and
it was probably present in the “n” direction as well, but not noticeable. To eliminate the
shear compliance effects, one approach was to subtract the un-cracked elastic solution
from the total solution so that only compliance due to the crack was incorporated. This
improved matters, but not enough to eliminate the effect to the satisfaction of the authors.

Finally, the calculation of the work increment AW was done in several different ways in
various attempts to resolve problems. Ultimately, the approach of calculating AW and
using it to determine the amount of crack growth during a time step was found to not
have the robust characteristic being sought and it was abandoned. It worked reasonably
well for Mode I situations in which the cracks were running in a straight line and the
cracks were even noted to accelerate and decelerate in response to reflected wave fronts.
However, for more complicated situations, the energy flow to the VFE’s did not seem to
work correctly.

The change made to improve robustness, however, was a relatively simple one. Instead
of calculating AW based upon the details of the elastic solution in the neighborhood of
the VFE, an R-Curve approach was taken. In this approach the stresses 6, and ) were
computed directly from the regular DYNA3D elements neighboring a VFE. These
stresses were used to compute G using Equations 21, 22 and 23 at each time step and,
instead of computing the work increment, AW, a G R-Curve was used to determine the
change in crack size.

The R-curve was taken to have the form
Gy =Ma—-a,)"+R 27)

The parameters A, n and R, in this expression were determined by curve fitting to a
measured, or realistically estimated, R-Curve for the simulated materials. Then, the
computed G at the end of a time step was set equal to Gg in Equation 27 which was then
solved for a to give the new crack length of a growing crack. In undertaking this
approach, situations arose in which the crack growth necessary to completely separate a
VFE may be larger than lengths for which “valid” R-Curve data are available. To
accommodate such circumstances, Equation 27 is fitted to the part of the curve for which
data exist and is used to calculate a until the VFE separates.

The R-Curve approach added measurably to the robustness of the VFE analysis

capability, but it retains the compliance behaviors discussed earlier and still requires the
selection of “h” for each VFE.
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VFE Results

Figure 105 shows a sample problem that was analyzed using the VFE approach with the
R-Curve. Shown in the Figure 105a is a straight bar of rectangular cross-section made
from steel and subjected to a time varying uniform axial stress. The top and bottom
edges and the front and rear faces of the bar are free from traction and it is idealized as
being in plane stress. The bar has a width of 2.5 inches, a length of 12.5 inches, and a
thickness T of 0.1 inches. The Young’s Modulus and Poisson’s Ratio are given in the
figure as is the expression for the R-Curve

that was used.
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Figure 105. (a) Straight Bar Tension (sbt) Specimen; (b) Applied Loading vs time.
The parameter “a” in the figure refers to ag , the initial size of the cracks within each VFE
Two different loading scenarios were examined. Figure 105b which shows the applied

stress increasing rapidly up to Gmay at time t, and remaining constant thereafter. The two
scenarios are characterized as follows:
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Maximum Stress, Gmax Ramp Time, t,

Scenario A: 35.2 ksi 1.0e-05 sec.
Scenario B: 48.0 ksi 1.0e-06 sec.

Both scenarios represent fast loading situations, but Scenario B is considerably more
intense than is Scenario A.

Figure 106 shows a graph of the R-Curve used in this sample problem. This R-Curve was
estimated from Fracture Toughness data given in (24) for a high strength steel with
Fracture Toughness of about 35 ksi-in"?. It is an estimated R-Curve based on Fracture
Toughness data and using

G, ==¢ (28)

to calculate G¢. The curve fitting process was conducted by choosing the values of A, n
and R, as follows: First, the knee of the curve was placed close to the G¢ value calculated
from Equation 28. Secondly, the slope of the curve after the knee was estimated by
allowing G to increase by approximately 10% while @ doubles from ay. This was done to
provide a plausible R-Curve for these numerical tests.

G R-Curve

60.00
50.00 Jessuseeeses®
40.00 e****=

30.00
20.00
10.00

0.00 T T T
0 0.2 0.4 0.6 0.8

Delta a - inches

Gr - in-lb/in*2

Figure 106. G R-Curve

Figure 107 shows a snapshot of the movie results from a VFE simulation for loading
scenario A. In this simulation, there were only 20 regular elements as shown and there
was a VFE along every internal interface between the regular elements. All of the VFE’s
were tracked continuously during the simulation to determine whether the initial crack
increased in size and when a crack grew large enough to separate a pair of regular
elements a flag was set and the time recorded when this occurred. The figure shows that
the first VFE elements to “break”, that is, fully separate, were numbers 15 and 14 which
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are situated at the center of the bar and they broke at a time of 4.91e-05 sec and 4.94e-
05sec respectively. A simple calculation shows that the longitudinal waves propagating
from the ends of the bar would meet at the center of the bar and through reinforcement
would reach a peak stress level at a time of about 4.1e-05 sec. From Figure 107, it is
evident that, in the simulation, the bar breaks at the center as expected at about 8
microseconds after the theoretical peak stress should be attained.

The picture shown in Figure 107 is excerpted from a movie of the simulation at a time
considerably later than initial failure, after the bar has broken into two pieces. The stress
wave propagation prior to and subsequent to the break can be clearly seen in the movie of
the simulation. That movie is presented at Hot Link 107: $bt_a_vfe 20.mov/ In this
movie, one can observe the wave propagation from the ends and the reinforcement of
those waves when first they begin to interact at the center of the bar. One can also
observe the break that occurs when the cracks grow at the center followed by the
separation of the upper and lower portions of the bar. The ringing after the break can
also be observed as can the lateral displacements in the elements due to the Poisson’s
effect as the waves move up and down the bar.
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Loading Scenario A, VFE

Number of Elements: 20 element (2 x 10)
Element Dimension: 1.257x1.25”
File Name: /raid5/gerken/frac/rectl/paper_runs/sbt_a_vfe 20
Failures:
vfe number 15 failed, time = 4.9158441492779780E-05
vfe number 14 failed, time = 4.9481700177293480E-05
max: 2.52e+04, shell 3 Y Stress

rrin: —2.41e+04. shell 15
Surface: middle 2.52e+04+
Ref frame: global 2.00e+04r

1.00e+04+»
0.00e+00~
=1.00e+04r

=2.00e+04~
-2.41e+04+

2

t = 2.00000e-04

sbt a vfe 20

Figure 107. Straight Bar Tension, 20 Elements.

The results given in Figure 107 are for a case which has only 20 regular elements. In
order to examine the effects of simulations with larger numbers of elements a number of
additional cases were simulated. Figure 108 shows the same problem analyzed using 80
regular elements with VFE’s along every internal interface. This case is again loaded
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with Scenario A. In this case several elements fail starting at time 4.82e-05 sec and
continuing through 5.04e-05 sec at which time the central plane is fully fractured. By
this time the plane one layer up and one layer down had already failed though all of this
occurred within 2 microseconds. In this case, the image provided in Figure 108 is taken
at the time of 1.0e-04 sec which is well past the time of these failures in the middle of the
bar. The shattering effects noted may be due to the larger number of elements involved
in this simulation thereby providing greater resolution than was possible in the Figure
107 problem. For example, the element dimensions in this case are one-half the size of
those in Figure 107 so the increased number of interfaces allows failures to occur that
could not occur in the Figure 107 case because VFE’s did not exist in those locations in
that case. Secondly, once a VFE fails, the subsequent simulation is affected by the
presence of the open cracks that result. It is therefore reasonable to expect differences
between the simulations as the number of elements increases. However, it is somewhat
encouraging that the mid-plane still fails, albeit along with some shattering that occurs
nearby. The simulation of Figure 108 can be observed in movie format in Hot Link 108:
kbt_a_vfe 80.mov]
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Number of Elements:
Element Dimension:

File Name:

Failures:
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number

80 element (4 x 20)
0.625” x 0.625”

Loading Scenario A

/raid5/gerken/frac/rectl/paper_runs/sbt_a_vfe 80

75 failed, time = 4.8293E-05
61 failed, time = 4.8427E-05
62 failed, time = 4.8751E-05
74 failed, time = 4.8751E-05
76 failed, time = 4.8885E-05
83 failed, time = 4.8912E-05
63 failed, time = 4.8966E-05
82 failed, time = 4.9209E-05
84 failed, time = 4.9289E-05
55 failed, time = 4.9316E-05

mox: 7.25e+04, shell 70

min: =3.97e+04, shell 35

Surface: middle
Ref frame: global

t

vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number

R

1.00000e-04

sbt a vfe 80

54 failed, time = 4.9343E-05
60 failed, time = 4.9343E-05
77 failed, time = 4.9478E-05
53 failed, time = 4.9693E-05
81 failed, time = 4.9693E-05
67 failed, time = 4.9882E-05
69 failed, time = 4.9936E-05
70 failed, time = 4.9936E-05
56 failed, time = 5.0259E-05
68 failed, time = 5.0448E-05

Y Stress
7.25e+04v -
6.00e+04
4.00e+04r

2.00e+04+~

0.00e+00~

—-2.00e+04~ -
=3.97e+04r~

2

Figure 108. Straight Bar Tension, 80 Elements.



Figure 109 shows a third simulation that was conducted with even smaller elements. In
this case, the elements are one-half the size of those in Figure 108. This time, the mid-
plane fails first beginning at the time 4.4e-05 sec and finishing at about 4.52e-05 sec.

In the Figure 109 simulation, shattering in the mid-bar area continues after the mid-plane
separates. Also, at a much later time of 1.9¢-04 sec, the ends of the bar spall off. The
movie format of the Figure 109 simulation can be observed at Hot Link 109:

kbt a vfe 320.mov |
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Number of Elements:
Element Dimension:
File Name:

Failures:

vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number
vfe number

320 element (8 x 40)
0.3125”x 0.3125”

/raid5/gerken/frac/rectl/paper_runs/sbt_a vfe 320

300 failed, time = 4.3995E-05
293 failed, time = 4.4251E-05
294 failed, time = 4.4359E-05
299 failed, time = 4.4372E-05
295 failed, time = 4.4844E-05
298 failed, time = 4.4911E-05
308 failed, time = 4.5073E-05
296 failed, time = 4.5113E-05
278 failed, time = 4.5127E-05
315 failed, time = 4.5154E-05
285 failed, time = 4.5207E-05
297 failed, time = 4.5221E-05

max: 5.8%e+04, shell 2

shattering in center section

vfe number
vfe number
vfe number
vfe number
vfe number
end spalling
vfe number
vfe number
vfe number
vfe number

min: —4.71e+04. shell 29

Surface: middle
Ref frame: global

|

MOCCT T
e
LT

1]

t = 2.00000e=04

311 failed, time = 6.7411E-05
56 failed, time = 1.55675E-04
535 failed, time = 1.5576E-04
538 failed, time = 1.5591E-04
57 failed, time = 1.5593E-04

584 failed, time = 1.9444E-04
12 failed, time = 1.9858E-04
579 failed, time = 1.9951E-04
14 failed, time = 1.9957E-04

¥ Stress

5.89e+04+ -

4.00e+04»
2.00e+04~
0.00e+00*

=2.00e+04r

-4.?1e+04r'

2«

Figure 109. Straight Bar Tension, 320 Elements.
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It is noted that the mid-bar failure starting times progressed from 4.91e-05 sec to 4.82e-
05 sec to 4.40e-05 sec in this set of three runs which indicates that this failure time is
decreasing as the number of elements increase. In all of these runs, the initial starter
crack length was held constant at @) = 0.08 inches while the element sizes ranged from
1.25 inches square, to 0.625 inches square, to 0.3125 inches square.

The next series of simulations conducted using the VFE approach made use of loading
Scenario B. In these cases the loading is much more rapid and these cases are
characterized by a greater propensity for the end of the bar to spall off than was observed
in the Scenario A cases.

Figure 110 shows the Scenario B loading situation for the 20-element simulation. The
mid plane fails first at time 3.87¢-05 sec followed shortly by the two planes one layer up
and down. Finally the top and bottom ends spall off at around 1.46e-04 sec. All of this
occurs more quickly than for Scenario A, undoubtedly because of the much steeper
loading ramp. The movie for this case is found at Hot Link 110, $bt b_vfe 20.mov||
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Loading Scenario B VFE

Number of Elements: 20 element (2 x 10)

Element Dimension: 1.257x 1.25”

File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b_vfe 20

Failures:

vfe number 14 failed, time = 3.8746E-05 vfe number 16 failed, time = 1.1285E-04

vfe number 15 failed, time = 3.8746E-05 vfe number 13 failed, time = 1.1290E-04

vfe number 11 failed, time = 4.0147E-05 vfe number 27 failed, time = 1.4587E-04

vfe number 17 failed, time = 4.0309E-05 vfe number 26 failed, time = 1.4684E-04

vfe number 12 failed, time = 4.0470E-05 vfe number 2 failed, time = 1.47163E-04

vfe number 18 failed, time = 4.0847E-05 vfe number 3 failed, time = 1.47271E-04
mox: 4.62e+04, shell 2 ¥ Stress

min: —7.05e+04. shell 11
Surface: middle
Ref frame: global

6.05e+04+
4.00e+04r] |
2.00e+04*
0.00e+00+ E
=2.00e+04r
—4.00e+04*| |

=6.00e+04~
—7.05e+04r~

8§

2

t = 2.00000e-04
sbt b vfe 20

Figure 110. Straight Bar Tension, 20 Elements, Scenario B.
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Figure 111 shows the 80-element version of this simulation and the movie is found at Hot
Link 111 at bt b_vfe 80.mov] In this case the mid-plane failure again occurs first at
around time 3.6e-05 sec followed by the two planes up and down one layer. Also, in this
case, the end spalls are completed at about 9.5e-05 sec.

Number of Elements: 80 element (4 x 20)
Element Dimension: 0.625” x 0.625”
File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b_vfe 80
Failures:
vfe number 68 failed, time = 3.5400E-05 vfe number 76 failed, time = 3.6774E-05
vfe number 70 failed, time = 3.5777E-05 vfe number 47 failed, time = 4.2454E-05
vfe number 67 failed, time = 3.6019E-05 vfe number 90 failed, time = 4.2616E-05
vfe number 60 failed, time = 3.6073E-05 vfe number 131 failed, time = 8.5902E-05
vfe number 69 failed, time = 3.6073E-05 vfe number 6 failed, time = 8.61707E-05
vfe number 75 failed, time = 3.6181E-05 vfe number 5 failed, time = 8.7110E-05
vfe number 62 failed, time = 3.6235E-05 vfe number 132 failed, time = 8.7406E-05
vfe number 77 failed, time = 3.6397E-05 vfe number 4 failed, time = 9.1658E-05
vfe number 63 failed, time = 3.6531E-05 vfe number 133 failed, time = 9.2788E-05
vfe number 61 failed, time = 3.6720E-05 vfe number 130 failed, time = 9.4831E-05
vfe number 74 failed, time = 3.6774E-05 vfe number 7 failed, time = 9.5288E-05
max: 3.47e+04, shell 43 ¥ Stress
min: —2.1 ‘Ig+04. shell 75 3.47e+04 >
Surface: middle 3.00 +04'_.
Ref frame: global ED:]] Hee
2.00e+04r~
1.00e+04~
0.00e+00*
=1.00e+04r

-2.1 1e+04~.

(s 2

t = 1.99995e-04

sbt b vfe 80

Figure 111. Straight Bar Tension, 80 Elements, Scenario B.
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Figure 112 shows the 320-element version of this simulation and Hot Link 112 at

kbt b_vfe 320.movis the movie of the simulation. In this case the mid-plane starts to
fail first, but the planes one layer up and one layer down also start to fail shortly after
such that all three planes are failing element-by-element nearly simultaneously. The mid-
plane finishes failing at time 3.57e-05 sec while the other two planes finish by 3.59e-05
sec. Then between 7.2 and 7.8e-05 sec, both of the end layers spall off.
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Number of Elements: 320 element (8 x 40)

Element Dimension: 0.3125”x 0.3125”

File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b_vfe 320
Failures:

vfe number 293 failed, time = 3.5060E-05 vfe number 312 failed, time = 3.5787E-05
vfe number 298 failed, time = 3.5248E-05 vfe number 311 failed, time = 3.5841E-05
vfe number 315 failed, time = 3.5248E-05 vfe number 281 failed, time = 3.5854E-05
vfe number 299 failed, time = 3.5275E-05 vfe number 12 failed, time = 7.2165E-05
vfe number 278 failed, time = 3.5289E-05 vfe number 581 failed, time = 7.2326E-05
vfe number 300 failed, time = 3.5356E-05 vfe number 11 failed, time = 7.2434E-05
vfe number 297 failed, time = 3.5370E-05 vfe number 582 failed, time = 7.2488E-05
vfe number 308 failed, time = 3.5396E-05 vfe number 580 failed, time = 7.2596E-05
vfe number 309 failed, time = 3.5410E-05 vfe number 13 failed, time = 7.2676E-05
vfe number 294 failed, time = 3.5423E-05 vfe number 583 failed, time = 7.2757E-05
vfe number 310 failed, time = 3.5450E-05 vfe number 10 failed, time = 7.2771E-05
vfe number 285 failed, time = 3.5518E-05 vfe number 579 failed, time = 7.3700E-05
vfe number 279 failed, time = 3.5585E-05 vfe number 584 failed, time = 7.3915E-05
vfe number 284 failed, time = 3.5585E-05 vfe number 14 failed, time = 7.4117E-05
vfe number 295 failed, time = 3.5585E-05 vfe number 9 failed, time = 7.4144E-05
vfe number 314 failed, time = 3.5612E-05 vfe number 578 failed, time = 7.7842E-05
vfe number 282 failed, time = 3.5625E-05 vfe number 8 failed, time = 7.7963E-05
vfe number 280 failed, time = 3.5666E-05 vfe number 585 failed, time = 7.8044E-05
vfe number 283 failed, time = 3.5706E-05 vfe number 15 failed, time = 7.8218E-05
vfe number 296 failed, time = 3.5747E-05 vfe number 304 failed, time = 1.8496E-04
vfe number 313 failed, time = 3.5774E-05 vfe number 289 failed, time = 1.8542E-04

max: 3.37e+04, shell 249

min: —8.02e+04. shell 157 T TR

Surface: middle
Ref frame: global

NEy o

t = 1.99995e-04
sbt b_vfe 320

¥ Stress
3.37e+04r .
2.00e+04r~
0.00e+00~

=2.00e+04~

=4.00e+04+

—6.00e+04+

-8.02e+04+

o«

Figure 112. Straight Bar Tension, 320 Elements, Scenario B.
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In this set of three simulations, only the top and bottom one-element layers spalled off the
ends. Inthe Scenario A case, which is a less rapid loading scenario, spalling did not
occur except in the 320-element case (Figure 109) and in that case a block of elements
totaling 1.25 inches in length spalled off.

Again, the mid-bar failure starting times progressed from 3.87¢-05 sec, to 3.54e-05 sec,
to 3.50e-05 sec as the number of elements increased. In this case, the mid-plane failures
start earlier than for Scenario A (time 4.91 to 4.40e-05 sec) probably because the loading
ramp for Scenario B is much more rapid. Also in this case, spalling of the ends occurred
in each simulation.

Strengths and Weakness of the VFE approach

Strengths: When mini-cracks are present, the VFE approach does model the compliance
of such cracks. The original VFE approach models the flow of energy to the crack tip,
which energy is the driver of crack growth in each mini-crack. All of the dynamics of the
problem are modeled by the FE code, as are the energy flows including strain energy,
kinetic energy etc. Even strain rate effects at the crack tip could be included, though that
has not been implemented in this work to date. The VFE is capable of modeling straight
and curved path cracking processes as long as approximating a curved path by sequential
straight segments along the borders of the regular finite elements is acceptable. A simple
model for mixed mode behavior is included. The VFE approach eliminates any need to
“kill” or remove elements leaving a question about what happened to the mass and
energy contained in the “killed” elements.

Weaknesses: Problems occurred with getting the energy calculations to make sense in
every test case run. It is not clear exactly why such problems should occur, but it may
have to do with the need to select the VFE height “h” and/or the compliance behavior of
the VFE elements and the potential associated effects on the wave propagation. With the
R-Curve approach, the robustness was improved, but still seemed to be weak overall. It
is not certain that the compliance allowed at the element interface was not causing
difficulties with the wave propagation and in fact even adding wave propagation effects
that are not correct or should not be present. It was found that numerical stability was
affected by the relative size of the VFE height “h”, so “h” was selected to avoid
numerical convergence problems in most of the various test problems considered.

The Tied-node VFE Concept.

The Tied-node approach to the VFE has the potential to eliminate problems associated
with the pre-fracture VFE compliance and the need to choose an element height “h” in
the original VFE approach. In the Tied-node approach, the node locations in a mesh have
multiple nodes as in the VFE approach. However, in this case, a starter crack is assumed
to be present at every element interface, but, in this case, the interface crack occurs in a
virtual element that has zero thickness. Also, the nodes stay “tied together” as the
interface crack grows until the crack has grown to the length of the element interface, at
which time the nodes at each end of the interface are released. Before the nodes are
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released, the crack is assumed to grow, driven by the strain energy release rate computed
from the stress levels present in the neighboring elements.

The stress intensity factors are calculated based upon the stresses at the edge of the
neighboring elements and from that the strain energy release rate G can be computed.

An R-Curve is used to represent the fracture behavior of the material and the calculated G
is entered into the R-Curve, and then is used to predict the change in crack length.

The crack length is tracked until the total length reaches the length of the element
interface at which time the nodes are released. The Tied-node approach has been
developed and tested and shows significant promise. The results of the tests and analyses
are discussed in the following sections.

The Tied-Node VFE Formulation

Figures 100 and 101 show the multi-noded mesh that is used for both the VFE and the
Tied-Node VFE approach. Figure 113(a) shows Regular Elements A and C with the VFE
between and the starter defect is shown to be present in the center of the interface. The
node points numbered 1 and 4 are taken to be coincident as are node points 2 and 3. The
Tied-Node VFE is taken to have zero height, normal to the interface, and zero mass.

Figure 113(b) shows the crack model used for this VFE. The crack is treated as though it
resides in an infinite domain and is subjected to stresses 6pand Ty. For the current work,
the remote stresses 6 and Ty are determined by taking the averages of each from along
the edges of the neighboring regular elements A and C. These stresses are then used to
compute the Crack Extension Force G from Equations 21, 22 and 23. Then a G R-Curve
in the form of Equation 27 is used to determine the amount of crack growth at each time
step during the simulation. As the simulation proceeds, the stresses are calculated at each
time step for every VFE in the mesh and, through Equations 21, 22, 23 and 27, the R-
Curve is used to compute the change in crack size at the end of the time step. The crack
size is constrained at each time step so that it cannot shrink in size even if the value of G
decreases. The crack size is allowed to increase until the crack length, Figure 113,
reaches the element interface length at which time the node pairs land 4 along with 2 and
3 are released.

It is important to realize that releasing these two node pairs alone does not fully remove
constraint from the mesh and allow a macroscopic crack opening to be modeled. This is
true because in general there are four coincident nodes (two node pairs) at these locations
as shown in Figure 101. Releasing just one pair of them does not fully release the mesh
at that point. Gerken (25) discusses the details of how this process works. Clearly, once
the simulation has progressed to the point that both node pairs at a mesh intersection
point are released, the crack can then progress on through that point. Gerken (25) also
discusses the procedure for releasing nodes in a way that allows cracks to grow vertically
or horizontally in meshes such as the one shown in Figure 100. This allows cracks to
follow whatever path is dictated by the dynamics of the simulation, albeit along paths
approximated by the straight edges of the regular elements.
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(a) (b)
Figure 113. (a) Tied-Node VFE Shown Between Two Neighboring Elements A and C;
(b) The Tied-Node VFE with Applied Stresses.

A number of simulations of the sample problem described in Figure 105 were also done
in the Tied Node VFE version of the code. The following sections present a discussion
of these results.

Figure 114 presents the Tied Node results for the 20 element simulation with loading
scenario A. In this case the stress waves propagate to the center of the bar and reinforce
causing the bar to fracture at that location. The Tied Node VFE’s fail at a time between
4.51 and 4.58 e-05 seconds. The picture shows the bar broken into two pieces at the end
of the simulation and the movie at Hot Link 114: $bt_a_tn_20.mov]|.
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Loading Scenario A, Tied Node

Number of Elements: 20 element (2 x 10)
Element Dimension: 1.25”x1.25”
File Name: /raid5/gerken/frac/rect]l/paper_runs/sbt a tn 20
Failure:
vfe number 14 failed, time = 4.5119219012639384E-05
vfe number 15 failed, time = 4.5873646373067462E-05
max: 2.16e+04, shell 17 ¥ Stress

rmin: —1.94e+04. shell 15
Surface: middle 2-1ﬁe+04*.
Ref frame: global

1.00e+04v

0.00e+00* | f

=1.00e+04r~

—1.94e+04>

-

t = 2.00000e-04

sbt a tn 20

Figure 114. Straight Bar Tension, 20 Elements, Scenario A.
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Figure 115 presents the results for the Tied Node simulation with 80 elements and
loading scenario A. In this case, the failures begin one layer down from the center of the
bar at time 4.66 e-05 seconds rather than exactly at the center of the bar. One layer up
begins fracturing at about the same time and both of these layers have finished fracturing
by time 4.94 e-05 seconds. The center layer has two elements fail at around time

6.11 e-05 seconds, but the center plane does not completely fail. Also by the time the
two layers that fail completely have finished failing, two elements at levels two layers up
and two layers down from the center have also failed. In addition, it is interesting that in
this case a number of vertically oriented VFE’s fail around the center area of the bar in a
symmetrically arranged pattern. These failures begin at about time 6.09 e-05 seconds.
The movie of this simulation can be viewed at Hot Link 115: bt a_tn_80.mov]|.
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Loading Scenario A, Tied Node.

Number of Elements:
Element Dimension:

File Name:
Failure:

vie
vie
vie
vie
vie
vie
vie
vie
vie
vie

number
number
number
number
number
number
number
number
number
number

61
62
75
76
53
56
81
84
60
63

80 element (4 x 20)
0.625” x 0.625”

/raidS/gerken/frac/rect]/paper_runs/sbt_a tn 80

failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =

BB DD D D D D D

.665E-05
.665E-05
.665E-05
.665E-05
.902E-05
.902E-05
.902E-05
.902E-05
.923E-05
.923E-05

max: 3.92e+04, shell 78
min: —1.22e+04. shell 38

Surfoce: middle
Ref frame: global

t = 2.00000e-04

vie
vie
vie
vie
vie
vie
vie
vie
vie
vie

sbt a tn 80

number
number
number
number
number
number
number
number
number
number

=1.22e+04r

74 failed, time
77 failed, time
65 failed, time
72 failed, time
68 failed, time
69 failed, time
78 failed, time
80 failed, time
57 failed, time
59 failed, time

Y Stress
3.92e+04r

3.00e+04r

2.00e+04+|

1.00e+04 ¢~

0.00e+00*~

2
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.923E-05
.923E-05
.093E-05
.096E-05
.115E-05
.115E-05
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.234E-05
.237E-05
.237E-05

Figure 115. Straight Bar Tension, 80 Elements, Scenario A.
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Figure 116 shows the results for a simulation with 320 elements with load scenario A. In
this case the bar breaks near the center of the bar but with two fractures, one that is two
layers up from the center and one that is two layers down from the center. The two
fractured layers have completed fracturing by about time 4.99 e-05 seconds, but while
that was occurring, four element symmetrically located four layers up and down on the
edges had also failed. After the two horizontal layers completed separation, two elements
in the center of the middle layer then separated and two vertically oriented VFE’s failed
on the vertical centerline of the bar two layers up and two down. The movie of this
simulation can be viewed at Hot Link 116: bt a tn 320.mov]|.
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Loading Scenario A, Tied Node.

Number of Elements:
Element Dimension:

File Name:
Failure:

vie
vie
vie
vie
vie
vie
vie
vie
vie
vie
vie
vie

number
number
number
number
number
number
number
number
number
number
number
number

266
267
326
327
265
268
325
328
264
269
324
329

320 element (8 x 40)
0.3125”x 0.3125”

/raid5/gerken/frac/rectl/paper_runs/sbt_a tn 320

failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =
failed, time =

I I S R N el

.543E-05
.543E-05
.543E-05
.543E-05
.593E-05
.593E-05
.593E-05
.593E-05
.757E-05
.757E-05
.757E-05
.757E-05

max: 3.39e+04, shell 306
min: =2.87e+04. shell 217

Surfoce: middle
Ref frame: global

vie
vie
vie
vie
vie
vie
vie
vie
vie
vie
vie
vie

ceseizad

t = 2.00000e-04

sbt a tn 320

number
number
number
number
number
number
number
number
number
number
number
number

233 failed, time
240 failed, time
353 failed, time
360 failed, time
323 failed, time
330 failed, time
263 failed, time
270 failed, time
296 failed, time
297 failed, time
319 failed, time
274 failed, time

¥ Stress

3.39e+04~

2.00e+04r
1.00e+04r
0.00e+00~

—1.00e+04~

—2.00e+04~
—2.87e+04

ST, IET, IS B NN N N NN NN

.808E-05
.808E-05
.810E-05
.810E-05
.991E-05
.991E-05
.993E-05
.993E-05
.861E-05
.861E-05
.878E-05
.882E-05

Figure 116. Straight Bar Tension, 320 Elements, Scenario A.
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Figure 117 shows the Straight Bar Tension test problem with twenty elements and
loading scenario B, the more aggressive loading ramp. In this case the middle layer of
VFE’s break and separate the bar into two pieces at time 3.59 e-05 seconds. The two
ends spall off at time 1.63 e-04 seconds. The movie of this simulation can be viewed at
Hot Link 117: §bt b_tn 20.mov|.

Loading Scenario B, Tied Node.

Number of Elements: 20 element (2 x 10)
Element Dimension: 1.257x 1.25”
File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b_tn 20
Failure:
vfe number 14 failed, time = 3.594E-05 vfe number 3 failed, time = 1.630E-04
vfe number 15 failed, time = 3.594E-05 vife number 26 failed, time = 1.631E-04
vfe number 2 failed, time = 1.630E-04 vfe number 27 failed, time = 1.631E-04
max: 7.24e+04, shell 19 ¥ Stress
min: —=3.05e+04. shell 15
Surfoce: middle ?'56‘?‘"‘04'-
Ref frame: global 6.00e+04~
4.00e+04r
2.00e+04 v~
] |
0.00e+00~

—-2.00e+04+~ .
=4.26e+04r

o~

t = 2.00000e-04
sbt b tn 20

Figure 117. Straight Bar Tension, 20 Elements, Scenario B.
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Figure 118 shows the straight tension bar for the case with eighty elements and loading

scenario B. By time 3.42 e-05 seconds, the middle plane has fractured along with a few
edge VFE’s and four vertically oriented VFE’s oriented symmetrically above and below
the middle of the bar. Between time 1.55 e-04 seconds and time 1.62 e-04 seconds, the

top and bottom ends of the bar spall off. The movie of this simulation can be viewed at

Hot Link 118: §bt b tn 80.mov]|.

Loading Scenario B, Tied Node.

Number of Elements: 80 element (4 x 20)
Element Dimension: 0.625” x 0.625”
File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b_tn 80
Failure:
vife number 67 failed, time = 3.386E-05 vife number 71 failed, time = 7.893E-05
vfe number 70 failed, time = 3.386E-05 vife number 73 failed, time = 7.893E-05
vfe number 68 failed, time = 3.416E-05 vfe number 11 failed, time = 1.550E-04
vfe number 69 failed, time = 3.416E-05 vfe number 14 failed, time = 1.550E-04
vife number 60 failed, time = 3.427E-05 vfe number 123 failed, time = 1.550E-04
vife number 63 failed, time = 3.427E-05 vfe number 126 failed, time = 1.550E-04
vfe number 74 failed, time = 3.427E-05 vfe number 12 failed, time = 1.629E-04
vfe number 77 failed, time = 3.427E-05 vfe number 13 failed, time = 1.629E-04
vfe number 64 failed, time = 7.893E-05 vife number 124 failed, time = 1.629E-04
vfe number 66 failed, time = 7.893E-05 vfe number 125 failed, time = 1.629E-04
max: 4.97e+04, shell 78 Y Stress
min: —6.28e+03. shell 33
Surface: middle 4.97e+04+
Ref f | |
ef frame: globa 4.00e+04r
3.00e+04~
} { 2.00e+04~
1.00e+04~
0.00e+00*
-6.28e+03~

-
ERINE

.

2«

t = 2.00000e-04

sbt b tn 80

Figure 118. Straight Bar Tension, 80 Elements, Tied Node, Loading Scenario B.



Figure 119 shows the straight bar with loading scenario B and 320 elements. Here the
midplane fractures at time 3.25 e-05 seconds and there are some failures above an below
the mid-plane at the same time. The two ends spall off starting at 8.85e-5 seconds and
ending by 9.90e-5 seconds. The movie of this simulation can be viewed at Hot Link 119:
kbt b tn 320.mov|

Loading Scenario B, Tied Node.

Number of Elements: 320 element (8 x 40)

Element Dimension: 0.3125”x 0.3125”

File Name: /raid5/gerken/frac/rectl/paper_runs/sbt b tn 320
Failure:

The vfe failure file for this run is not available.

max: 3.60e+04, shell 314 ¥ Stress
rmin: —3.77e+04. shell 161
Surfoce: middle 3.6{le+{}4-'
Ref frame: global
W EEEE W 2-00e+04~
0.00e+00~
—2.00e+04~

=3.77e+04r .

t = 1.99995e-04
sbt b tn 320

Figure 119. Straight Bar Tension, 320 Elements, Scenario B.
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Figures 114 through 119 and their associated movies constitute the test cases for the Tied
Node VFE approach in DYNA3D conducted so far. Before these are discussed further, a
set of simulations using the ICE (Interface Crack Element) approach developed for
ABAQUS implementation by Gerken (25) will be presented. These are presented for
purposes of comparison with the results on the Straight Bar Tension problem obtained
from the VFE and the Tied Node VFE formulations that were implemented in DYNA3D.
Movies for the ICE simulations are, however, not available. The ICE simulations were
all conducted using the same R-Curve, specimen geometry and loading conditions
discussed so far and presented in Figure 105.

Figures 120 through 122 present the ICE simulations for the straight bar tension
specimen subjected to loading scenario A. The file containing the times at which various
interface cracks failed is not available for presentation in these figures, but comments are
provided in each figure describing the times at which important events were observed to
occur.
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Number of Elements: 20 element (2 x 10)

Element Dimension: 1.257 x 1.25”
File Name: /raid5/gerken/abqus/paper_run/sbt_a ice 20
Failure:

Notes: Mid-plane failure occurs at 4.65¢-05 seconds

NFAR.HE

+1.450:+04
+1.102e+04
+7.E58e+03
+4.057:+03
+5, 7EEe+02
—2.,304e+03
-6, 385:+03
-9, 265e+03
-1,335=+04
-1.683a+04
=2, 0%1e+04
—2.373:+04
=2,727e+04

Z

l————sﬂep: Step 1

Primary War: 1VARH
Deformed War: U Deformation Scale Fackor: +1,000e+00

Step Time = 2, 0000E-04

Figure 120. Straight Bar Tension, 20 Elements, ICE, Loading Scenario B.
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Number of Elements: 80 element (4 x 20) Loading Scenario A

Element Dimension: 0.625” x 0.625”
File Name: /raid5/gerken/abqus/paper _run/sbt_a ice 80
Failure:

Mid-plane failure starts 4.65e-05 seconds. Failures in layers that are 2 up and 2 down start at 4.95e-5.
Center area fracture ends by 5.05e-5. Edge elements break at center of remaining fragment at 1.02e-4

+7.145e+04
+E. 44 Ze+0d
+5, 738e+04
+5, 03Ee+04
+4,331e+04
+3,E28e+04
+2, 924 e+04
+2, 228 1e+04
+1.517e+04
+2,128e+02
+1.,102e+02
=L, 922e+02
-1.237e+04

Z

l—sﬂep: step 1 T el 3E4| step Time = 2. 0000E-04

Primary War: UFARME
Defommed War: VW Defomabtion Scale Factoro: +1.000e+00

Figure 121. Straight Bar Tension, 80 Elements, ICE, Loading Scenario B.



Number of Elements: 320 element (8 x 40) Loading Scenario A

Element Dimension: 0.3125” x 0.3125”
File Name: /raid5/gerken/abqus/paper _run/sbt_a ice 320
Failure:

Failure started at the center two elements of the mid-plane at 4.65e-5 seconds. That was immediately
followed by shattering above and below the mid-plane. Separation into two pieces occurred at 7.6e-5.
Spalling of the end 4 rows of elements starts at about 1.02e-4 seconds. Spalling was not expected to occur
in this simulation.

1ITARME
+§, 925e+04
+7,BE2e+0d
+E, 399e+04
+5,136e+04 171
+3,873e+04
+2,610e+04 _:H
+1,347e+04 ||
+8.381+02 ]
-1,179e+04 w
-2.442e+04
-3, 705e+04 =
-4, 968e+0d
—E.,231e+04 |
| i
l—sﬁep: Step 1 o Lol Edt step Time = 2, 0000E-04

Frimaiy War: WARMHE
Deformed War: U Defomation Scale Factoro: +1.000e+00

Figure 122. Straight Bar Tension, 320 Elements, ICE, Loading Scenario B.
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Figures 123 through 125 give the results of ICE simulations for the straight bar tension
specimen subjected to loading scenario B. In this case it expected that the ends of the
bars should spall off after the mid-plane fails or after multiple failures in and around the
mid-plane occur. In these figures, the ends spalled off in every case, but it is not easy to
see in every case.

Number of Elements: 20 element (2 x 10)
Element Dimension: 1.257x 1.25”
File Name: /raid5/gerken/abqus/paper_run/sbt b _ice 20

Failure: The mid-plane and 1 row up and 1 row down all fail at 3.65¢-5 seconds. Both ends spall off at
1.785e-4 seconds.

AR ME
+8.731e+04
+7.BE1le+04
+6,392e+04
+6.222et+0d
+4, 052e+04
+2,88%e+04
+1, 71%e+04
+5.437e+03
—E.258e+03
—1.795e+04
—2.965e+04
—4,135e+04
—E.304e+04

2

l—sﬂep: step 1 - step Time = 2, 0000E-04

Primary War: VAR
Deformed War: vV Defommation Scale Factor: +1,000e+00

Figure 123. Straight Bar Tension, 20 Elements, ICE, Loading Scenario B.
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Number of Elements: 80 element (4 x 20) Loading Scenario B

Element Dimension: 0.625” x 0.625”

File Name: /raid5/gerken/abqus/paper_run/sbt b_ice 80

Failure: Failure starts on the outside two elements, one row up and one row down from the mid-plane at
3.45e-5 seconds. The mid-plane starts to fail at 3.5e-5 seconds in the center two elements. Failure starts on
the interior 2 elements, 2 rows up and 2 rows down from the mid-plane at 3.65¢-5 seconds. Failure starts
on the exterior two elements 3 rows up and 3 rows down at 3.8e-5 seconds. Complete separation of the 2
rows up and 2 rows down occurs at 4.5e-5 seconds. Complete separation of the mid-plane occurs at 8.05e-
5 seconds. Spall of the end two rows of elements starts in the outer two elements at 1.024e-4 seconds and
is complete at 1.08e-4 seconds. Note: The simulation crashed at 1.28e-4 seconds.

AR ME

+7.599+04
+6, B Zetld
+5. 487 s+04
+4. 421 e+04
+3,370s+04
+2,320e+04
+1. 264 etid
+2,078e+03
-2, 481e+08
=1.304e+04
=2, 960e+04
-4, 016e+04
=5, 072e+04

2

l—sﬂep: step 1

Frimaim Wac! UTARME
Defomed War: Vo Defomation Scale Factor: +1,000e+00

Step Time = 1.2800E-04

Figure 124. Straight Bar Tension, 80 Elements, ICE, Loading Scenario B.
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Number of Elements: 320 element (8 x 40) Loading Scenario B
Element Dimension: 0.3125” x 0.3125”
File Name: /raid5/gerken/abqus/paper _run/sbt b _ice 320

Failure: Mid-plane failure starts at 3.15e-5 seconds and finishes at 3.2e-5 seconds. Fracture of the center
2 interfaces 4 rows from the mid-plane occur at 3.65¢-5 seconds. Failure of the outer elements 6 rows from
the mid-plane start to occur at 3.85e-5 seconds. The center two elements on the two edges fracture at 5.6e-
5 seconds (start of spall of the end pieces). Complete fracture of the interfaces 6 rows from the mid-plane
occurs by 9.5¢-5. End spall is complete by 1.07e-4 seconds.

Also note that this picture is not at 2e-4 seconds. This is because the solution crashed at the time just after
this print-out.

%

+8, 251e+04
+7,175e+04
+6. 045e+04
+5. 017e+04
+3, 939&+04
+2, 861e+04
+1, 782e+04
+7.043e+03
=3, 735e+03
=1, 452e+04
-2, E30e+04
-2, E08e+04
—4, B36s+04

Z

l————sﬂep: step 1 Incremnent 3E&: step Time = 1.9431E-04

Primarn Tar: UTARME
Deformed War: U Deformation scale Factor: +1,000e+00

%

Figure 125. Straight Bar Tension, 320 Elements, ICE, Loading Scenario B.
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Discussion of Straight Bar Tension Results.

Results have been presented from three different numerical approaches all applied to the
same problem. In all cases, the initial starting crack size was 0.08 inches. The VFE and
Tied-Node VFE approaches were implemented in DYNA3D while the ICE approach was
implemented in ABAQUS standard.

Table 101 presents a summary of the results for both loading scenarios. The time of first
failure of any VFE is given as is the time of first failure of a mid-plane VFE. The column
entitled SPALL gives comments about spalling of the ends and, where relevant, the time
at which the spall failure initiates is given.

Table 101. Summary of Straight Bar Tension Results

. Virtual Number of Time of Mid-plane Ends Spall at
Loading . . . L
Scenario Element Regular First Failure Failure Time in sec.

Type Elements Sec. Starts, Sec.

A VFE 20 4.91e-05 4.91e-05 No Spall

A TN-VFE 20 4.51e-05 4.51e-05 No Spall

A ICE 20 4.65e-05 4.65e-05 No Spall

A VFE 80 4.83e-05 4.98e-05 Spall 10e-05
A TN-VFE 80 4.66e-05 6.11e-05 No Spall

A ICE 80 4.65e-05 4.65e-05 No Spall

A VFE 320 4.40e-05 4.40e-05 Spall 1.55e-04
A TN-VFE 320 4.54e-05 5.86e-05 No Spall

A ICE 320 4.65e-05 4.65e-05 Spall 1.02e-04
B VFE 20 3.87e-05 3.87e-05 Spall 1.46e-04
B TN-VFE 20 3.59e-05 3.59¢-05 Spall 1.63e-04
B ICE 20 3.65e-05 3.65e-05 Spall 1.78e-04
B VFE 80 3.54e-05 3.54e-05 Spall 8.59¢-05
B TN-VFE 80 3.39¢-05 3.39e-05 Spall 1.55e-05
B ICE 80 3.45e-05 3.50e-05 Spall 1.02e-04
B VFE 320 3.51e-05 3.51e-05 Spall 7.21e-05
B TN-VFE 320 3.25e-05 3.25e-05 Spall 8.85e-05
B ICE 320 3.15e-05 3.15e-05 Spall 5.60e-05

The dynamically loaded straight bar considered here is a complicated problem and not
one that has simple analytical solutions with which to easily compare, so such
comparisons are not attempted at this writing. Some general statements can be made that
indicate the codes are behaving in ways that predict somewhat consistent behavior for
these problems. This can be seen by examination of the times to first failure as presented
in Figure 126. The times of first failure for Scenario A range between 44.0 and 49.1
microseconds while the times of first failure for Scenario B range between 31.5 and 38.7
microseconds. The predicted time of first failure are shorter for Scenario B because the
loading reaches the maximum load sooner and because the value of the maximum load is
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larger for Scenario B. Behavior consistent with convergence due to element size
decrease is not expected to occur in these results. That is true because these problems all
have macroscopic cracks present that are of constant size and as the elements shrink, the
cracks become a larger portion of the element size. Still, the time of first failure
predicted by the three techniques are consistent with each other as the number of
elements increase and their sizes decrease.

60.00
50.00 .\_‘_\
3 40.00
[ =
S \
(3] o
g .Xis *
e —4
© 30.00
E —o— Avfe
g —— Atn-vfe
- 20.00 —i—Aice
—e—B \fe
—— B tn-vfe
10.00 .
——Bice
000 T T T T T T
0 50 100 150 200 250 300
Number of Elements

Figure 126. Time of First Failure in Straight Bar Tension Simulations. A and B denote
Scenario A and B respectively.

In Table 101 it is noted that every one of the Scenario B cases demonstrates a spall
failure at the ends while most of those in Scenario A do not. The two scenarios were pre-
selected by noticing, during practice analysis runs, that there appeared to be a dividing
line between spalling or not spalling based on the steepness of the loading ramp and the
magnitude of the maximum load applied. It turned out however, that in Scenario A with
80 elements and with 320 elements, that spalling is predicted in some of the runs. It is
important to remember that the formulations of the three analysis approaches are different
from each other, so some differences in the predictions are not surprising.
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These differences show up not only in the spalling behavior at the ends, but also in the
nature of the first failure. In some cases, the first failure is at the mid-plane and it
progresses smoothly across the mid-plane to separate the bar into two pieces. In other
cases, the first failure occurs away from the mid-plane, but still near the mid-plane of the
bar and progresses into a kind of shattering of the middle part of the bar on more than one
plane. While these behaviors are not the same, they are indeed similar. However, in the
absence of experimental results to use for comparison, not much further can be said about
these results.

It is encouraging that the predicted times of first failure are somewhat similar in Scenario
A for the three different analysis approaches as is the case for Scenario B. Further, it is
also encouraging that all three of the analysis approaches predict the same trend in time
of first failure when changing from Scenario A to Scenario B.

The Stout-Liu Cantilever Impact Experiment

To study the behavior of High Explosives, Stout and Liu (26) developed an impact
experiment as shown in Figure 127. The impact of this experiment was simulated using
both the tied node VFE and the ICE discrete fracture models. The setup, shown in the
figure, consisted of a 6” x 3” piece of A2 tool steel clamped at one end. A notch 1” long
is located in the center of the lower edge of the specimen as shown. A load is applied to
the cantilever via a compressive stress wave traveling through a long rod in contact with
the edge of the specimen. The simulation uses the material properties for steel with E =
30E+06 psi and v = 0.29. The R-curve was estimated from Fracture Toughness data
given by Crane and Bigg (27) for the A2 tool Steel used in the experiment and is given by

G =16(Aa)"” +10 (29)
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A2 Tool Steel
Dimensions in inches

|
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IOI T
7.2 in/sec

Figure 126. Setup of A2 tool steel cantilever impact experiment.

The ten-inch impact slug was initially travelling with a speed of 7.2 inches per second as
shown in Figure 126. It hit the end of the long bar and caused a stress wave to propagate
along the bar and into the cantilever specimen. The resulting waves interacted in a
complex way with the specimen and the crack tip and caused the specimen to fracture
into two parts after the crack propagated completely through the sample. Figure 128
shows a tracing made from the broken parts after completion of the experiment. The
wavy line in the tracing represents the path along which the crack propagated during the
experiment. The crack meandered slightly left for about 1.5 inches then turned sharply to
the left and propagated toward the clamp. As the crack neared the clamp it turned
sharply again, exiting the specimen at the top edge near the clamp. Data on crack speed
are not available from the experiment.
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Figure 128. Tracing of crack path after failure. Made by Smith, Gerken, Liu, Stout,
June 11, 1998.

Figure 129 shows the final state in a simulation of the Stout Liu Cantilever experiment
using the Tied Node VFE approach. Equation 29 was used for the G R-Curve. The crack
started to grow at time 7.97e-05 seconds. A movie of this simulation can be viewed at
Hot Link 129: antilever mov tn.091799.qt| Examination of the movie indicates that the

crack moves straight ahead for a time then turns left in a way similar to what occurred in
the experiment.

Figure 129. Tied Node VFE Simulation of the Stout Liu Cantilever Experiment.
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Figure 130 shows the final state in a simulation of the same problem using the ICE
approach, shown in pink. The crack path from the experiment is shown in red and the
crack path from the Tied Node simulation is repeated here in blue. Again, the crack path
from the simulation is quite similar to the crack path determined from the experiment.
The movie of this simulation may be viewed at Hot Link 130: gantilever mov ice.mov]|.

e

|

"
i

|

Figure 130. ICE Simulation of the Stout Liu Cantilever Experiment Superimposed on
the Experimental Crack Path and Tied Node Results. Blue = Tied Node Simulation, Red
= Experimental Crack Path, Pink = ICE Simulation.

These simulations give crack path results that are similar to each other and similar to the
experimental crack path. This comparison lends credibility to both the ICE and Tied
Node VFE approaches through comparison with this validation experiment.

Straight Bar Spall Simulation

Figure 131 shows steel bar, with dimensions L = 12.5 in., W =2.5 in., and t = 0.1 in., that
is impacted by a steel projectile with length, / = 0.25 in., and velocity, V = 1092.9 in/sec.
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Figure 131. A thin bar impacted by a short thin projectile.

.

The simulation assumes perfect transmission of the compressive wave from the projectile
into the bar until a tensile release wave reaches the contact interface at which point
perfect unloading occurs over a finite time. The stress at the interface can be calculated
from the equation ¢ = pcv, where o is the stress, p is the density of the material, c is the
longitudinal wave speed in the material, and v is the velocity of the impactor. The time
of transmission of the compressive wave from the impactor to the bar is the time it takes
the compressive wave to travel from the location of contact, reflect of the free end as a
tensile wave, and then return to the location of contact. In other words, the time of
contact is the time it takes a longitudinal wave to traverse the impactor twice which is ¢ =
2l/c. From these assumptions, the impact can be modeled as a stress applied to the end of
the bar over a finite length of time. The magnitude of the applied stress is 160 ksi and the
duration is 2.5 x 10 seconds. The rise and drop times for the load wave are each 1.0e-07
seconds. This problem was simulated using the Tied-Node VFE approach described in
this report. Figure 132 shows the results of this simulation at time 1.0e-04 seconds
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max: 5.90e+04, shell 244 Y Stress
rmin: —5.50e+04. shell 225
Surface: middle B.DGE+G4*.

Ref frame: global 5.00e+04r
|. .

0.00e+00~

—5.00e+04~

| =1.00e+05"

I
=1.60e+05"

Y

[
i X

Tied Node Spall Problerm (10X displacement)
t = 1.00000e-04

Figure 132. Tied Node Simulation of Impact Bar.

The simulation indicates that the ends spall off at 9.6875 in. from the impacted end.
Spall at this location starts on the outer edges of the bar at 7.33e-5 seconds and
propagates symmetrically inward to finish by 7.45¢e-5 seconds.

A Three Dimensional Tied-Node Implementation.

A Tied-Node VFE implementation has also been completed in DYNA3D using three-
dimensional brick elements in a mult-noded three-dimensional mesh. Each face of each
brick can accommodate a crack at the interface modeled as described in this report or
other kinds of interface failure models can be encorporated. As an initial test of this
approach simulation of the impact of the bar shown in Figure 131 was undertaken using
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the 3D Tied-Node DYNA3D discrete fracture model. In this initial simulation, no
fracture mechanics was encorporated into the model, however, and the surface separation
was taken to occur when a critical stress level was achieved. Hot Link 133 presents the
results of this three dimensional simulation in the form of a movie at Bdspall.501.mov |

A significant amount of progress has been demonstrated toward the goal of having robust
verified and validated codes that can simulate the wave propagation and fragmentation of
structures. Further work is needed to improve the fidelity of these codes. Such work
continues.
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